Back to Search Start Over

Search for genes gained by horizontal gene transfer in an entomopoxvirus, with special reference to the analysis of the transfer of an ABC transporter gene.

Authors :
Sugimoto, Takafumi N
Jouraku, Akiya
Mitsuhashi, Wataru
Source :
Virus Research. Sep2024, Vol. 347, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

• Thirty-five entomopoxvirus (ACEV) genes possibly gained by horizontal transfer. • Tenascin gene in ACEV by horizontal transfer; sole instance of this gene in viruses. • An ACEV ABC transporter gene possibly originated from the 12Kb gene of its host. • The ACEV ABC transporter gene appearing to have been gained via the form of mRNA. • The ACEV ABC transporter gene continuously being transcribed in the host of ACEV. Although it is generally believed that large DNA viruses capture genes by horizontal gene transfer (HGT), the detailed manner of such transfer has not been fully elucidated. Here, we searched for genes in the coleopteran entomopoxvirus (EV) Anomala cuprea entomopoxvirus (ACEV) that might have been gained by ACEV by HGT. We classified the potential source organisms for HGT into three categories: the host A. cuprea ; other organisms, including viruses unrelated to EVs; and organisms with uncertain host attribution. Of the open reading frames (ORFs) of the ACEV genome, 2.1 % were suggested to have been gained from the host by ACEV or its recent ancestor via HGT; 8.7 % were possibly from organisms other than the host, and 3.7 % were possibly from the third category of organisms via HGT. The analysis showed that ACEV contains some interesting ORFs obtained by HGT, including a large ATP-binding cassette protein (ABC transporter) ORF and a tenascin ORF (IDs ACV025 and ACV123, respectively). We then performed a detailed analysis of the HGT of the ACEV large ABC transporter ORF—the largest of the ACEV ORFs. mRNA sequences obtained by RNA-seq from fat bodies—sites of ACEV replication—and midgut tissues—sites of initial infection—of the virus's host A. cuprea larvae were subjected to BLAST analysis. One type of ABC transporter ORF from the fat bodies and two types from the midgut tissues, one of which was identical to that in the fat bodies, had the greatest identity to the ABC transporter ORF of ACEV. The two types from the host had high levels of identity to each other (approximately 95 % nucleotide sequence identity), strongly suggesting that the host ABC transporter group consisting of the two types was the origin of ACV025. We then determined the sequence (12,381 bp) containing a full-length gene of the A. cuprea ABC transporter. It turned out to be a transcription template for the abovementioned mRNA found in both tissues. In addition, we determined a large part (ca. 6.9 kb) of the template sequence for the mRNA found only in the midgut tissues. The results showed that the ACEV ABC transporter ORF is missing parts corresponding to introns of the host ABC transporter genes, indicating that the ORF was likely acquired by HGT in the form of mRNA. The presence of definite duplicated sequences adjacent to the ACEV ABC transporter genes—a sign of LINE-1 retrotransposon-mediated HGT—was not observed. An approximately 2-month ACV025 transcription experiment suggested that the transporter sequence is presumed to be continuously functional. The amino acid sequence of ACV025 suggests that its product might function in the regulation of phosphatide in the host-cell membranes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01681702
Volume :
347
Database :
Academic Search Index
Journal :
Virus Research
Publication Type :
Academic Journal
Accession number :
178597367
Full Text :
https://doi.org/10.1016/j.virusres.2024.199418