Back to Search
Start Over
Paper substrate designed with TEMPO-oxidized cellulose nanofibers/cationic guar gum hydrogel and its application in a colorimetric biosensor for rapid bacteria detection.
- Source :
-
International Journal of Biological Macromolecules . Aug2024:Part 2, Vol. 274, pN.PAG-N.PAG. 1p. - Publication Year :
- 2024
-
Abstract
- The monitoring of foodborne bacterial contamination requires simple and convenient biosensors. This work describes a novel paper-based colorimetric biosensor for the rapid and sensitive bacteria detection. The biosensor was constructed via the encapsulation of D-alanyl-D-alanine capped gold nanoparticles (DADA-AuNPs) in a modified paper that was fabricated by the freeze-drying of TEMPO-oxidized cellulose nanofibers/cationic guar gum composite hydrogel-modified filter paper. The results indicated that the size of DADA-AuNPs largely determined the color of their aqueous system and they exhibited light red to dark red as their size increased from around 6 to 36 nm. All these different sized DADA-AuNPs turned into colorless when encountered with either S. aureus or E. coli. In particular, the smaller the DADA-AuNPs size, the faster the discoloration. The encapsulation of DADA-AuNPs into modified paper negligibly changed their responsiveness towards bacteria. In comparison to the original filter paper and oven-dried hydrogel-modified filter paper, the freeze-dried hydrogel-modified paper was demonstrated to be a better substrate for the encapsulation of DADA-AuNPs since they could be loaded with a larger amount of DADA-AuNPs in a faster way and showed a better perceivable color. This work demonstrated a promising paper-based colorimetric biosensor for the facile and rapid detection of bacteria. [Display omitted] [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 01418130
- Volume :
- 274
- Database :
- Academic Search Index
- Journal :
- International Journal of Biological Macromolecules
- Publication Type :
- Academic Journal
- Accession number :
- 178595896
- Full Text :
- https://doi.org/10.1016/j.ijbiomac.2024.133497