Back to Search Start Over

Energy‐Efficient Co‐production of Benzoquinone and H2 Using Waste Phenol in a Hybrid Alkali/Acid Flow Cell.

Authors :
He, Chengchao
Pan, Duo
Chen, Kai
Chen, Junxiang
Zhang, Qinlong
Zhang, Hao
Zhang, Zhifang
Wen, Zhenhai
Source :
Angewandte Chemie. 7/29/2024, Vol. 136 Issue 31, p1-10. 10p.
Publication Year :
2024

Abstract

In both the manufacturing and chemical industries, benzoquinone is a crucial chemical product. A perfect and economical method for making benzoquinone is the electrochemical oxidation of phenol, thanks to the traditional thermal catalytic oxidation of phenol process requires high cost, serious pollution and harsh reaction conditions. Here, a unique heterostructure electrocatalyst on nickel foam (NF) consisting of nickel sulfide and nickel oxide (Ni9S8‐Ni15O16/NF) was produced, and this catalyst exhibited a low overpotential (1.35 V vs. RHE) and prominent selectivity (99 %) for electrochemical phenol oxidation reaction (EOP). Ni9S8‐Ni15O16/NF is beneficial for lowering the reaction energy barrier and boosting reactivity in the EOP process according to density functional theory (DFT) calculations. Additionally, an alkali/acid hybrid flow cell was successfully established by connecting Ni9S8‐Ni15O16/NF and commercial RuIr/Ti in series to catalyze phenol oxidation in an alkaline medium and hydrogen evolution in an acid medium, respectively. A cell voltage of only 0.60 V was applied to produce a current density of 10 mA cm−2. Meanwhile, the system continued to operate at 0.90 V for 12 days, showing remarkable long‐term stability. The unique configuration of the acid‐base hybrid flow cell electrolyzer provides valuable guidance for the efficient and environmentally friendly electrooxidation of phenol to benzoquinone. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00448249
Volume :
136
Issue :
31
Database :
Academic Search Index
Journal :
Angewandte Chemie
Publication Type :
Academic Journal
Accession number :
178558488
Full Text :
https://doi.org/10.1002/ange.202407079