Back to Search Start Over

ZnMgO Thin Films by Ultrasonic Spray Pyrolysis: Modulation of Optical and Electrical Properties by Post‐annealing and Magnesium Composition.

Authors :
El Berjali, Wafae
Ould Saad Hamady, Sidi
Boulet, Pascal
Colas, Victor
Gries, Thomas
Horwat, David
Pierson, Jean‐François
Source :
Physica Status Solidi. A: Applications & Materials Science. Jul2024, Vol. 221 Issue 14, p1-10. 10p.
Publication Year :
2024

Abstract

ZnMgO semiconductor is of major interest in sustainable thin‐film solar cells in order to replace buffer layers based on nonabundant or toxic elements. In addition, it has the potential 1) to allow optimal band alignment with absorbers such as CIGS, CZTS, and Cu2O; 2) to have high transparency; 3) to have adjustable properties for use as a window or buffer layer; and 4) to be deposited using low‐cost and energy‐efficient techniques such as ultrasonic spray pyrolysis. This study focuses on modulating ZnMgO properties with the optimization of the ultrasonic spray pyrolysis and post‐annealing parameters. Optical transmission, X‐ray diffraction, and van der Pauw/Hall effect measurements are used to study the material properties. Thin films with a strong <002> preferred orientation are obtained with large crystallite size (42–80 nm), high transparency (>90%), a bandgap increase from 3.28 to 3.34 eV with magnesium composition and annealing, an optimal Urbach energy of 0.068 eV, and electrical properties modulated by magnesium composition and annealing with resistivity varying from 6.520 Ωcm down to 0.022 Ωcm and a carrier concentration from 4.8 × 1017 up to 1.4 × 1020 cm−3. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18626300
Volume :
221
Issue :
14
Database :
Academic Search Index
Journal :
Physica Status Solidi. A: Applications & Materials Science
Publication Type :
Academic Journal
Accession number :
178532232
Full Text :
https://doi.org/10.1002/pssa.202400015