Back to Search Start Over

Biophysical Modeling of Synaptic Plasticity.

Authors :
Lee, Christopher T.
Bell, Miriam
Bonilla-Quintana, Mayte
Rangamani, Padmini
Source :
Annual Review of Biophysics. May2024, Vol. 53, p397-426. 30p.
Publication Year :
2024

Abstract

Dendritic spines are small, bulbous compartments that function as postsynaptic sites and undergo intense biochemical and biophysical activity. The role of the myriad signaling pathways that are implicated in synaptic plasticity is well studied. A recent abundance of quantitative experimental data has made the events associated with synaptic plasticity amenable to quantitative biophysical modeling. Spines are also fascinating biophysical computational units because spine geometry, signal transduction, and mechanics work in a complex feedback loop to tune synaptic plasticity. In this sense, ideas from modeling cell motility can inspire us to develop multiscale approaches for predictive modeling of synaptic plasticity. In this article, we review the key steps in postsynaptic plasticity with a specific focus on the impact of spine geometry on signaling, cytoskeleton rearrangement, and membrane mechanics. We summarize the main experimental observations and highlight how theory and computation can aid our understanding of these complex processes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1936122X
Volume :
53
Database :
Academic Search Index
Journal :
Annual Review of Biophysics
Publication Type :
Academic Journal
Accession number :
178527673
Full Text :
https://doi.org/10.1146/annurev-biophys-072123-124954