Back to Search Start Over

Eccentricity evolution of PTA sources from cosmological initial conditions.

Authors :
Fastidio, F
Gualandris, A
Sesana, A
Bortolas, E
Dehnen, W
Source :
Monthly Notices of the Royal Astronomical Society. 7/25/2024, Vol. 532 Issue 1, p295-304. 10p.
Publication Year :
2024

Abstract

Recent results from pulsar timing arrays (PTAs) show evidence for a gravitational wave background (GWB) consistent with a population of unresolved supermassive black hole (SMBH) binaries (BHBs). While the data do not yet constrain the slope of the spectrum, this appears to flatten at the lowest frequencies, deviating from the power-law shape expected for circular binaries evolving solely due to gravitational wave (GW) emission. Interestingly, such flattening can be explained with a population of eccentric rather than circular binaries. The eccentricity of BHBs is notoriously difficult to predict based simply on the parameters of the host galaxies and the initial galactic orbit, as it is subject to stochastic effects. We study the evolution of the eccentricity of BHBs formed in galactic mergers with cosmological initial conditions from pairing to coalescence, with a focus on potential PTA sources. We select galactic mergers from the IllustrisTNG100-1 simulation and re-simulate them at high resolution with the N -body code griffin down to binary separations of the order of a parsec. We then estimate coalescence time-scales with a semi-analytical model of the evolution under the effects of GW emission and stellar hardening. We find that most mergers in IllustrisTNG100-1 occur on highly eccentric orbits, and that the eccentricity of BHBs at binary formation correlates with the initial eccentricity of the merger, if this is no larger than approximately 0.9. For extremely eccentric mergers, the binaries tend to form with modest eccentricities. We discuss the implications of these results on the interpretation of the observed GWB. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00358711
Volume :
532
Issue :
1
Database :
Academic Search Index
Journal :
Monthly Notices of the Royal Astronomical Society
Publication Type :
Academic Journal
Accession number :
178506094
Full Text :
https://doi.org/10.1093/mnras/stae1411