Back to Search Start Over

Assessing the performance of group‐based trajectory modeling method to discover different patterns of medication adherence.

Authors :
Diop, Awa
Gupta, Alind
Mueller, Sabrina
Dron, Louis
Harari, Ofir
Berringer, Heather
Kalatharan, Vinusha
Park, Jay J. H.
Mésidor, Miceline
Talbot, Denis
Source :
Pharmaceutical Statistics. Jul/Aug2024, Vol. 23 Issue 4, p511-529. 19p.
Publication Year :
2024

Abstract

It is well known that medication adherence is critical to patient outcomes and can decrease patient mortality. The Pharmacy Quality Alliance (PQA) has recognized and identified medication adherence as an important indicator of medication‐use quality. Hence, there is a need to use the right methods to assess medication adherence. The PQA has endorsed the proportion of days covered (PDC) as the primary method of measuring adherence. Although easy to calculate, the PDC has however several drawbacks as a method of measuring adherence. PDC is a deterministic approach that cannot capture the complexity of a dynamic phenomenon. Group‐based trajectory modeling (GBTM) is increasingly proposed as an alternative to capture heterogeneity in medication adherence. The main goal of this paper is to demonstrate, through a simulation study, the ability of GBTM to capture treatment adherence when compared to its deterministic PDC analogue and to the nonparametric longitudinal K‐means. A time‐varying treatment was generated as a quadratic function of time, baseline, and time‐varying covariates. Three trajectory models are considered combining a cat's cradle effect, and a rainbow effect. The performance of GBTM was compared to the PDC and longitudinal K‐means using the absolute bias, the variance, the c‐statistics, the relative bias, and the relative variance. For all explored scenarios, we find that GBTM performed better in capturing different patterns of medication adherence with lower relative bias and variance even under model misspecification than PDC and longitudinal K‐means. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15391604
Volume :
23
Issue :
4
Database :
Academic Search Index
Journal :
Pharmaceutical Statistics
Publication Type :
Academic Journal
Accession number :
178426749
Full Text :
https://doi.org/10.1002/pst.2365