Back to Search Start Over

On regression and classification with possibly missing response variables in the data.

Authors :
Mojirsheibani, Majid
Pouliot, William
Shakhbandaryan, Andre
Source :
Metrika. Aug2024, Vol. 87 Issue 6, p607-648. 42p.
Publication Year :
2024

Abstract

This paper considers the problem of kernel regression and classification with possibly unobservable response variables in the data, where the mechanism that causes the absence of information can depend on both predictors and the response variables. Our proposed approach involves two steps: First we construct a family of models (possibly infinite dimensional) indexed by the unknown parameter of the missing probability mechanism. In the second step, a search is carried out to find the empirically optimal member of an appropriate cover (or subclass) of the underlying family in the sense of minimizing the mean squared prediction error. The main focus of the paper is to look into some of the theoretical properties of these estimators. The issue of identifiability is also addressed. Our methods use a data-splitting approach which is quite easy to implement. We also derive exponential bounds on the performance of the resulting estimators in terms of their deviations from the true regression curve in general L p norms, where we allow the size of the cover or subclass to diverge as the sample size n increases. These bounds immediately yield various strong convergence results for the proposed estimators. As an application of our findings, we consider the problem of statistical classification based on the proposed regression estimators and also look into their rates of convergence under different settings. Although this work is mainly stated for kernel-type estimators, it can also be extended to other popular local-averaging methods such as nearest-neighbor and histogram estimators. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00261335
Volume :
87
Issue :
6
Database :
Academic Search Index
Journal :
Metrika
Publication Type :
Academic Journal
Accession number :
178416451
Full Text :
https://doi.org/10.1007/s00184-023-00923-3