Back to Search Start Over

Markov processes on quasi-random graphs.

Authors :
Keliger, D.
Source :
Acta Mathematica Hungarica. Jun2024, Vol. 173 Issue 1, p20-51. 32p.
Publication Year :
2024

Abstract

We study Markov population processes on large graphs, with the local state transition rates of a single vertex being a linear function of its neighborhood. A simple way to approximate such processes is by a system of ODEs called the homogeneous mean-field approximation (HMFA). Our main result is showing that HMFA is guaranteed to be the large graph limit of the stochastic dynamics on a finite time horizon if and only if the graph-sequence is quasi-random. An explicit error bound is given and it is 1 N plus the largest discrepancy of the graph. For Erdős–Rényi and random regular graphs we show an error bound of order the inverse square root of the average degree. In general, diverging average degrees is shown to be a necessary condition for the HMFA to be accurate. Under special conditions, some of these results also apply to more detailed type of approximations like the inhomogenous mean field approximation (IHMFA). We pay special attention to epidemic applications such as the SIS process. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02365294
Volume :
173
Issue :
1
Database :
Academic Search Index
Journal :
Acta Mathematica Hungarica
Publication Type :
Academic Journal
Accession number :
178415904
Full Text :
https://doi.org/10.1007/s10474-024-01441-y