Back to Search
Start Over
Ensemble One-Class Support Vector Machine for Sea Surface Target Detection Based on k -Means Clustering.
- Source :
-
Remote Sensing . Jul2024, Vol. 16 Issue 13, p2401. 19p. - Publication Year :
- 2024
-
Abstract
- Sea surface target detection is a key stage in a typical target detection system and directly influences the performance of the whole system. As an effective discriminator, the one-class support vector machine (OCSVM) has been widely used in target detection. In OCSCM, training samples are first mapped to the hypersphere in the kernel space with the Gaussian kernel function, and then, a linear classification hyperplane is constructed in each cluster to separate target samples from other classes of samples. However, when the distribution of the original data is complex, the transformed data in the kernel space may be nonlinearly separable. In this situation, OCSVM cannot classify the data correctly, because only a linear hyperplane is constructed in the kernel space. To solve this problem, a novel one-class classification algorithm, referred to as ensemble one-class support vector machine (En-OCSVM), is proposed in this paper. En-OCSVM is a hybrid model based on k -means clustering and OCSVM. In En-OCSVM, training samples are clustered in the kernel space with the k -means clustering algorithm, while a linear decision hyperplane is constructed in each cluster. With the combination of multiple linear classification hyperplanes, a complex nonlinear classification boundary can be achieved in the kernel space. Moreover, the joint optimization of the k -means clustering model and OCSVM model is realized in the proposed method, which ensures the linear separability of each cluster. The experimental results based on the synthetic dataset, benchmark datasets, IPIX datasets, and SAR real data demonstrate the better performance of our method over other related methods. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 16
- Issue :
- 13
- Database :
- Academic Search Index
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 178413832
- Full Text :
- https://doi.org/10.3390/rs16132401