Back to Search Start Over

Long Short-Term Memory Networks' Application on Typhoon Wave Prediction for the Western Coast of Taiwan.

Authors :
Chao, Wei-Ting
Kuo, Ting-Jung
Source :
Sensors (14248220). Jul2024, Vol. 24 Issue 13, p4305. 16p.
Publication Year :
2024

Abstract

Huge waves caused by typhoons often induce severe disasters along coastal areas, making the effective prediction of typhoon-induced waves a crucial research issue for researchers. In recent years, the development of the Internet of Underwater Things (IoUT) has rapidly increased the prediction of oceanic environmental disasters. Past studies have utilized meteorological data and feedforward neural networks (e.g., BPNN) with static network structures to establish short lead time (e.g., 1 h) typhoon wave prediction models for the coast of Taiwan. However, sufficient lead time for prediction remains essential for preparedness, early warning, and response to minimize the loss of lives and properties during typhoons. The aim of this research is to construct a novel long lead time typhoon-induced wave prediction model using Long Short-Term Memory (LSTM), which incorporates a dynamic network structure. LSTM can capture long-term information through its recurrent structure and selectively retain necessary signals using memory gates. Compared to earlier studies, this method extends the prediction lead time and significantly improves the learning and generalization capability, thereby enhancing prediction accuracy markedly. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
13
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
178413503
Full Text :
https://doi.org/10.3390/s24134305