Back to Search Start Over

Identification and Analysis of the Geohazards Located in an Alpine Valley Based on Multi-Source Remote Sensing Data.

Authors :
Yang, Yonglin
Zhao, Zhifang
Zhou, Dingyi
Lai, Zhibin
Chang, Kangtai
Fu, Tao
Niu, Lei
Source :
Sensors (14248220). Jul2024, Vol. 24 Issue 13, p4057. 18p.
Publication Year :
2024

Abstract

Geohazards that have developed in densely vegetated alpine gorges exhibit characteristics such as remote occurrence, high concealment, and cascading effects. Utilizing a single remote sensing datum for their identification has limitations, while utilizing multiple remote sensing data obtained based on different sensors can allow comprehensive and accurate identification of geohazards in such areas. This study takes the Latudi River valley, a tributary of the Nujiang River in the Hengduan Mountains, as the research area, and comprehensively uses three techniques of remote sensing: unmanned aerial vehicle (UAV) Light Detection and Ranging (LiDAR), Small Baseline Subset interferometric synthetic aperture radar (SBAS-InSAR), and UAV optical remote sensing. These techniques are applied to comprehensively identify and analyze landslides, rockfalls, and debris flows in the valley. The results show that a total of 32 geohazards were identified, including 18 landslides, 8 rockfalls, and 6 debris flows. These hazards are distributed along the banks of the Latudi River, significantly influenced by rainfall and distribution of water systems, with deformation variables fluctuating with rainfall. The three types of geohazards cause cascading disasters, and exhibit different characteristics in the 0.5 m resolution hillshade map extracted from LiDAR data. UAV LiDAR has advantages in densely vegetated alpine gorges: after the selection of suitable filtering algorithms and parameters of the point cloud, it can obtain detailed terrain and geomorphological information on geohazards. The different remote sensing technologies used in this study can mutually confirm and complement each other, enhancing the capability to identify geohazards and their associated hazard cascades in densely vegetated alpine gorges, thereby providing valuable references for government departments in disaster prevention and reduction work. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
13
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
178413255
Full Text :
https://doi.org/10.3390/s24134057