Back to Search Start Over

Hydrogel Extinguishants.

Authors :
Li, Guineng
Wang, Qiaobo
Liu, Guiqun
Yao, Mutian
Wang, Yue
Li, Yeying
Lin, Kaiwen
Liu, Ximei
Source :
Nanomaterials (2079-4991). Jul2024, Vol. 14 Issue 13, p1128. 27p.
Publication Year :
2024

Abstract

The exploitation of clean and efficient fire extinguishing materials has substantial implications for improving disaster prevention, mitigation, and relief capabilities, maintaining public safety, and protecting people's lives and property as well as the natural environment. Natural polymer hydrogel with high water containment, excellent film formation, high heat insulation, ecofriendliness, and degradability has huge potential in achieving new breakthroughs for developing clean and efficient fire extinguishing materials and products. In recent years, the exploitation of hydrogel extinguishing materials and the fabrication of products has attracted great attention, gradually replacing traditional fire extinguishing products. In this perspective, an in-depth review of the evolution of hydrogels applied for fire extinguishing and prevention is presented. Firstly, the extinguishing principles of hydrogel extinguishants are explained. Secondly, the preparation strategies and evaluation system of the hydrogel extinguishants are emphatically discussed. Although great progress has been made in developing high-performance hydrogel extinguishants, it remains challenging to develop cost-effective, degradable, and easy-to-use hydrogel extinguishants. Additionally, we highlight the importance of considering the commercial aspects of hydrogel extinguishants. Looking into the future, hydrogel extinguishants are promising, but continued investment in research and development is necessary to overcome the challenges. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
14
Issue :
13
Database :
Academic Search Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
178412267
Full Text :
https://doi.org/10.3390/nano14131128