Back to Search Start Over

Supramolecular Self-Assembled Nanostructures Derived from Amplified Structural Isomerism of Zn(II)−Sn(IV)−Zn(II) Porphyrin Triads and Their Visible Light Photocatalytic Degradation of Pollutants †.

Authors :
Shee, Nirmal Kumar
Kim, Hee-Joon
Source :
Nanomaterials (2079-4991). Jul2024, Vol. 14 Issue 13, p1104. 20p.
Publication Year :
2024

Abstract

Two structural isomeric porphyrin-based triads (Zn(II)porphyrin−Sn(IV)porphyrin−Zn(II)porphyrin) denoted as T1 and T2 were prepared from the reaction of meso-[5-(4-hydroxyphenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrinato]zinc(II) (ZnL) with trans-dihydroxo-[5,10-bis(3-pyridyl)-15,20-bis(phenyl)porphyrinato]tin(IV) (SnP1) and trans-dihydroxo-[5,15-bis(3-pyridyl)-10,20-bis(phenyl)porphyrinato]tin(IV) (SnP2), respectively. All the compounds were characterized using UV–vis spectroscopy, emission spectroscopy, ESI−MS, 1H NMR spectroscopy, and FE-SEM. Most importantly, the two structurally isomeric porphyrin-based triads supramolecularly self-assembled into completely different nanostructures. T1 exhibits a nanosphere morphology, whereas T2 exhibits a nanofiber morphology. The amplified geometric feature in the structural isomeric porphyrin-based triads dictates the physical and chemical properties of the two triads. Both compounds showed the morphology-dependent visible light catalytic photodegradation of rhodamine B dye (74–97% within 90 min) and tetracycline antibiotic (44–71% within 45 min) in water. In both cases, the photodegradation efficiency of T2 was higher than that of T1. The present investigation can significantly contribute to the remediation of wastewater by tuning the conformational changes in porphyrin-based photocatalysts. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
14
Issue :
13
Database :
Academic Search Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
178412243
Full Text :
https://doi.org/10.3390/nano14131104