Back to Search Start Over

Spectroscopic evidence of spin-state excitation in d-electron correlated semiconductor FeSb2.

Authors :
Huayao Li
Guohua Wang
Ning Ding
Quan Ren
Gan Zhao
Wenting Lin
Jinchuan Yang
Wensheng Yan
Qian Li
Run Yang
Shijun Yuan
Denlinger, Jonathan D.
Zhenxing Wang
Xiaoqian Zhang
Wray, L. Andrew
Shuai Dong
Dong Qian
Lin Miao
Source :
Proceedings of the National Academy of Sciences of the United States of America. 7/9/2024, Vol. 121 Issue 28, p1-6. 16p.
Publication Year :
2024

Abstract

Iron antimonide (FeSb2) has been investigated for decades due to its puzzling electronic properties. It undergoes the temperature-controlled transition from an insulator to an ill-defined metal, with a cross-over from diamagnetism to paramagnetism. Extensive efforts have been made to uncover the underlying mechanism, but a consensus has yet to be reached. While macroscopic transport and magnetic measurements can be explained by different theoretical proposals, the essential spectroscopic evidence required to distinguish the physical origin is missing. In this paper, through the use of X-ray absorption spectroscopy and atomic multiplet simulations, we have observed the mixed spin states of 3d6 configuration in FeSb2. Furthermore, we reveal that the enhancement of the conductivity, whether induced by temperature or doping, is characterized by populating the high-spin state from the low-spin state. Our work constitutes vital spectroscopic evidence that the electrical/magnetical transition in FeSb2 is directly associated with the spin-state excitation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
121
Issue :
28
Database :
Academic Search Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
178410797
Full Text :
https://doi.org/10.1073/pnas.2321193121