Back to Search Start Over

Phosphorylation of ZmAL14 by ZmSnRK2.2 regulates drought resistance through derepressing ZmROP8 expression.

Authors :
Wang, Yalin
Cheng, Jinkui
Guo, Yazhen
Li, Zhen
Yang, Shuhua
Wang, Yu
Gong, Zhizhong
Source :
Journal of Integrative Plant Biology. Jul2024, Vol. 66 Issue 7, p1334-1350. 17p.
Publication Year :
2024

Abstract

Drought stress has negative effects on crop growth and production. Characterization of transcription factors that regulate the expression of drought‐responsive genes is critical for understanding the transcriptional regulatory networks in response to drought, which facilitates the improvement of crop drought tolerance. Here, we identified an Alfin‐like (AL) family gene ZmAL14 that negatively regulates drought resistance. Overexpression of ZmAL14 exhibits susceptibility to drought while mutation of ZmAL14 enhances drought resistance. An abscisic acid (ABA)‐activated protein kinase ZmSnRK2.2 interacts and phosphorylates ZmAL14 at T38 residue. Knockout of ZmSnRK2.2 gene decreases drought resistance of maize. A dehydration‐induced Rho‐like small guanosine triphosphatase gene ZmROP8 is directly targeted and repressed by ZmAL14. Phosphorylation of ZmAL14 by ZmSnRK2.2 prevents its binding to the ZmROP8 promoter, thereby releasing the repression of ZmROP8 transcription. Overexpression of ZmROP8 stimulates peroxidase activity and reduces hydrogen peroxide accumulation after drought treatment. Collectively, our study indicates that ZmAL14 is a negative regulator of drought resistance, which can be phosphorylated by ZmSnRK2.2 through the ABA signaling pathway, thus preventing its suppression on ZmROP8 transcription during drought stress response. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16729072
Volume :
66
Issue :
7
Database :
Academic Search Index
Journal :
Journal of Integrative Plant Biology
Publication Type :
Academic Journal
Accession number :
178396166
Full Text :
https://doi.org/10.1111/jipb.13677