Back to Search
Start Over
Superstability of the $ p $-power-radical functional equation related to sine function equation.
- Source :
-
Electronic Research Archive . 2023, Vol. 31 Issue 10, p1-16. 16p. - Publication Year :
- 2023
-
Abstract
- In this paper, we find solutions and investigate the superstability bounded by a function (Gǎvruta sense) for the p -power-radical functional equation related to sine function equation: f ( x p + y p 2 p) 2 − f ( x p − y p 2 p) 2 = f (x) f (y) from an approximation of the p -power-radical functional equation: f ( x p + y p 2 p) 2 − f ( x p − y p 2 p) 2 = g (x) h (y) , where p is a positive odd integer, and f , g and h are complex valued functions on R . Furthermore, the obtained results are extended to Banach algebras. In this paper, we find solutions and investigate the superstability bounded by a function (Gǎvruta sense) for the p -power-radical functional equation related to sine function equation: f ( x p + y p 2 p) 2 − f ( x p − y p 2 p) 2 = f (x) f (y) from an approximation of the p -power-radical functional equation: f ( x p + y p 2 p) 2 − f ( x p − y p 2 p) 2 = g (x) h (y) , where p is a positive odd integer, and f , g and h are complex valued functions on R . Furthermore, the obtained results are extended to Banach algebras. [ABSTRACT FROM AUTHOR]
- Subjects :
- *FUNCTIONAL equations
*SINE function
*STABILITY theory
*INTEGERS
*BANACH algebras
Subjects
Details
- Language :
- English
- ISSN :
- 26881594
- Volume :
- 31
- Issue :
- 10
- Database :
- Academic Search Index
- Journal :
- Electronic Research Archive
- Publication Type :
- Academic Journal
- Accession number :
- 178362345
- Full Text :
- https://doi.org/10.3934/era.2023321