Back to Search Start Over

Toxicological insight of metiram: immuno-oxidative, neuro-behavioral, and hemato-biochemical changes during acute exposure of Nile tilapia (Oreochromis niloticus).

Authors :
Shaalan, Mohamed
Elbealy, Mohamed A.
Darwish, Mahmoud I. M.
Younis, Elsayed M.
Abdelwarith, Abdelwahab A.
Abdelaty, Asmaa I.
Davies, Simon J.
Ibrahim, Rowida E.
Rahman, Afaf N. Abdel
Source :
BMC Veterinary Research. 7/9/2024, Vol. 20 Issue 1, p1-11. 11p.
Publication Year :
2024

Abstract

Background: The inappropriate use of pesticides including fungicides creates severe biological hazards that can endanger fish health and impede sustainable aquaculture. Objective: This study investigated the negative impacts of metiram (MET), a fungicide on the health status of Nile tilapia (Oreochromis niloticus) for a 96-hour duration as an acute exposure in a static renewal system. Methods: Three hundred fish (average body weight: 37.50 ± 0.22 g) were assigned into six groups (50 fish/group) with five replicates (10 fish/replicate). Fish were exposed to various six concentrations (0, 1.5, 3, 4.5, 6, and 7.5 mg/L) of MET as a water exposure to for 96-hour without water exchange. The fish's behavior, clinical signs, and mortalities were documented every day of the exposure period. Additionally, MET's impact on blood profile, stress biomarkers, hepato-renal functions, immune-antioxidant status, and brain biomarker were closely monitored. Results: The lethal concentration (LC50) of MET estimated using Finney's probit technique was 3.77 mg/L. The fish's behavior was severely impacted by acute MET exposure, as clear by an increase in surfacing, loss of equilibrium, unusual swimming, laterality, abnormal movement, and a decline in aggressive behaviors. The survivability and hematological indices (white and red blood cell count, differential white blood cell count, hematocrit value, and hemoglobin) were significantly reduced in a concentration-dependent manner following MET exposure. Acute exposure to MET (1.5–7.5 mg/L) incrementally increased stress biomarkers (nor-epinephrine, cortisol, and glucose), lipid peroxides (malondialdehyde), and brain oxidative DNA damage biomarker (8-hydroxy-2-deoxyguanosine). A hepato-renal dysfunction by MET exposure (4.5–7.5 mg/L) was evidenced by the significant increase in the alanine and aspartate aminotransferases and creatinine values. Moreover, a substantial decline in the immune parameters (lysozyme, complement 3, serum bactericidal activity, and antiprotease activity) and antioxidant variables (total antioxidant capacity, superoxide dismutase, and glutathione peroxidase) resulted from acute MET exposure. Conclusion: According to these findings, the 96-hour LC50 of MET in Nile tilapia was 3.77 mg/L. MET exposure triggered toxicity in Nile tilapia, as seen by alterations in fish neuro-behaviors, immune-antioxidant status, hepato-renal functioning, and signifying physiological disturbances. This study emphasizes the potential ecological dangers provoked by MET as an environmental contaminant to aquatic systems. However, the long-term MET exposure is still needed to be investigated. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17466148
Volume :
20
Issue :
1
Database :
Academic Search Index
Journal :
BMC Veterinary Research
Publication Type :
Academic Journal
Accession number :
178354591
Full Text :
https://doi.org/10.1186/s12917-024-04126-4