Back to Search Start Over

Unnatural Direct Interspecies Electron Transfer Enabled by Living Cell‐Cell Click Chemistry.

Authors :
Zhao, Yi‐Cheng
Sha, Chong
Zhao, Xing‐Ming
Du, Jia‐Xin
Zou, Long
Yong, Yang‐Chun
Source :
Angewandte Chemie. Jul2024, Vol. 136 Issue 29, p1-8. 8p.
Publication Year :
2024

Abstract

Direct interspecies electron transfer (DIET) is essential for maintaining the function and stability of anaerobic microbial consortia. However, only limited natural DIET modes have been identified and DIET engineering remains highly challenging. In this study, an unnatural DIET between Shewanella oneidensis MR‐1 (SO, electron donating partner) and Rhodopseudomonas palustris (RP, electron accepting partner) was artificially established by a facile living cell‐cell click chemistry strategy. By introducing alkyne‐ or azide‐modified monosaccharides onto the cell outer surface of the target species, precise covalent connections between different species in high proximity were realized through a fast click chemistry reaction. Remarkably, upon covalent connection, outer cell surface C‐type cytochromes mediated DIET between SO and RP was achieved and identified, although this was never realized naturally. Moreover, this connection directly shifted the natural H2 mediated interspecies electron transfer (MIET) to DIET between SO and RP, which delivered superior interspecies electron exchange efficiency. Therefore, this work demonstrated a naturally unachievable DIET and an unprecedented MIET shift to DIET accomplished by cell‐cell distance engineering, offering an efficient and versatile solution for DIET engineering, which extends our understanding of DIET and opens up new avenues for DIET exploration and applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00448249
Volume :
136
Issue :
29
Database :
Academic Search Index
Journal :
Angewandte Chemie
Publication Type :
Academic Journal
Accession number :
178317557
Full Text :
https://doi.org/10.1002/ange.202402318