Back to Search
Start Over
Construction of a BiOI/ZnO heterojunction on biomass Juncus effusus fiber for photodegradation of organic pollutants.
- Source :
-
Journal of Environmental Sciences (Elsevier) . Dec2024, Vol. 146, p28-38. 11p. - Publication Year :
- 2024
-
Abstract
- • A heterojunction composite of BiOI/ZnO was successfully synthesized on JE. • BiOI/ZnO composite exhibits a flower-like architecture on the cellulosic JE fiber. • The porous and 3D network structure of JE endows the synergistic effect. Semiconductor heterojunction engineering and three-dimensional (3D) architecture construction have been considered highly desirable strategies to enhance photocatalytic performance. Herein, a BiOI/ZnO composite photocatalyst with a 3D flower-like architecture was successfully prepared, which was stably immobilized on three-dimensional porous lignocellulosic biomass Juncus effusus (JE) fiber. The outstanding photocatalytic performance of the BiOI/ZnO-JE fiber was confirmed by the degradation of tetracycline hydrochloride (TC, 90%), ciprofloxacin (CIP, 79%), and norfloxacin (NOR, 81%). The enhanced photocatalytic activities were mainly attributed to the synergistic absorption performance of the lignocellulosic JE and the effective transfer and separation of charges. Moreover, the hydroxyl (·OH) and superoxide radicals (·O 2 −) are the main reactive species in the photocatalytic process according to the analysis. This work may provide a novel perspective for constructing high-performance lignocellulosic-based photocatalytic materials. [Display omitted] [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10010742
- Volume :
- 146
- Database :
- Academic Search Index
- Journal :
- Journal of Environmental Sciences (Elsevier)
- Publication Type :
- Academic Journal
- Accession number :
- 178233556
- Full Text :
- https://doi.org/10.1016/j.jes.2023.04.028