Back to Search Start Over

Mussel-inspired polydopamine modified mica with enhanced mechanical strength and thermal performance of poly(lactic acid) coating.

Authors :
Wei, Xin-yue
Li, Wei
Li, Jian
Niu, Xiao-ting
Source :
International Journal of Biological Macromolecules. Jul2024:Part 2, Vol. 273, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

Polylactic acid (PLA), as a green functional polymer, has been useful in various coating applications. However, due to the low mechanical strength and thermal stability of PLA, it needs to be improved in order to expand its application areas. In this work, a series of polylactic acid (PLA) nanocomposite films were prepared through introducing polydopamine-modified mica (PDA@MICA) as a self-assemble nanofiller to enhance its mechanical and thermal properties. The results demonstrated that PLA/PDA@MICA shows excellent mechanical properties. Tensile tests showed that PLA/PDA@MICA exhibits a 58.3 % increase in tensile strength and a 16.8 % increase in Young's modulus compared to pure PLA. Meanwhile, thermal performance testing shown the introduction of PDA@MICA led to an increase in crystallinities (Xc = 24.78 %). And the thermal decomposition temperature of PLA/PDA@MICA film (374 °C) was slightly higher than that of PLA film (367 °C). The simultaneous improvement of the mechanical and thermal properties was attributed to the formation of hydrogen bonds between PLA and PDA@MICA. In addition, the parallel arrangement of PDA@MICA and PLA macromolecular chains forms a unique "brick and mortar" structure in the coating, which enhances the mechanical properties of PLA/PDA@MICA composite coatings. This study reports a successful approach to simultaneously address the drawbacks of PLA, specifically its low thermal stability and mechanical strength, thereby promoting its widespread application in the coatings industry. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01418130
Volume :
273
Database :
Academic Search Index
Journal :
International Journal of Biological Macromolecules
Publication Type :
Academic Journal
Accession number :
178210156
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.133148