Back to Search Start Over

Design and Optimization of a Mid-Field Wireless Power Transfer System for Enhanced Energy Transfer Efficiency.

Authors :
Khan, Daud
Ahmad, Ashfaq
Choi, Dong-you
Source :
Symmetry (20738994). Jun2024, Vol. 16 Issue 6, p753. 14p.
Publication Year :
2024

Abstract

Mid-field wireless power transfer (WPT) offers a compelling solution for delivering power to miniature implantable medical devices deep within the human body. Despite its potential, the current power delivery levels remain constrained, and the design of a compact source structure to focus the transmitter field on such implants presents significant challenges. In this paper, a novel miniaturized transmitter antenna operating at 1.71 GHz is proposed. Leveraging the antenna proximity-coupled feeding technique, we achieve optimal current distribution for efficient power transfer. Additionally, a receiver integrated within the human body is proposed, comprising a slotted ground and a meandering slotted radiating element. This receiver is excited via a coaxial feedline with a truncated ground. Our findings demonstrate wireless power transfer of −23 dB (0.501%) at a distance of 30 mm between the transmitter and receiver, alongside a peak gain of −20 dB with an impedance bandwidth of 39.61%. These results highlight promising advancements in enhancing energy transfer efficiency for deep-implant applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20738994
Volume :
16
Issue :
6
Database :
Academic Search Index
Journal :
Symmetry (20738994)
Publication Type :
Academic Journal
Accession number :
178192259
Full Text :
https://doi.org/10.3390/sym16060753