Back to Search Start Over

An Automated Approach for Mapping Mining-Induced Fissures Using CNNs and UAS Photogrammetry.

Authors :
Wang, Kun
Wei, Bowei
Zhao, Tongbin
Wu, Gengkun
Zhang, Junyang
Zhu, Liyi
Wang, Letian
Source :
Remote Sensing. Jun2024, Vol. 16 Issue 12, p2090. 20p.
Publication Year :
2024

Abstract

Understanding the distribution and development patterns of mining-induced fissures is crucial for environmental protection and geological hazard prevention. To address labor-intensive manual inspection, an automated approach leveraging Convolutional Neural Networks (CNNs) and Unmanned Aerial System Photogrammetry (UASP) is proposed for fissure identification and mapping. Initially, the ResNet-50 network was employed for the binary classification of the cropped UASP orthophoto images. A comparative analysis was conducted to determine the optimal model between DeepLabv3+ and U-Net. Subsequently, the identified fissures were mosaicked and spatially projected onto the original orthophoto image, incorporating precise projection data, thereby furnishing a spatial reference for environmental governance. The results indicate a classification accuracy of 93% for the ResNet-50 model, with the U-Net model demonstrating a superior identification performance. Fissure orientation and distribution patterns are influenced by the mining direction, ground position of the mining workface, and topographic undulations. Enhancing the CNN performance can be achieved by incorporating variables such as slope indices, vegetation density, and mining workface locations. Lastly, a remote unmanned approach is proposed for the automated mapping of mining-induced fissures, integrated with UAS automated charging station technology. This study contributes to the advancement of intelligent, labor-saving, and unmanned management approaches advocated by the mining industry, with potential for broad applications in mining environmental protection efforts. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
12
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
178191705
Full Text :
https://doi.org/10.3390/rs16122090