Back to Search Start Over

Genome-Wide Analysis of Serine Carboxypeptidase-like Genes in Soybean and Their Roles in Stress Resistance.

Authors :
He, Long
Liu, Qiannan
Han, Shaojie
Source :
International Journal of Molecular Sciences. Jun2024, Vol. 25 Issue 12, p6712. 20p.
Publication Year :
2024

Abstract

The serine carboxypeptidase-like (SCPL) gene family plays a crucial role in the regulation of plant growth, development, and stress response through activities such as acyltransferases in plant secondary metabolism pathways. Although SCPL genes have been identified in various plant species, their specific functions and characteristics in soybean (Glycine max) have not yet been studied. We identified and characterized 73 SCPL genes, grouped into three subgroups based on gene structure and phylogenetic relationships. These genes are distributed unevenly across 20 soybean chromosomes and show varied codon usage patterns influenced by both mutation and selection pressures. Gene ontology (GO) enrichment suggests these genes are involved in plant cell wall regulation and stress responses. Expression analysis in various tissues and under stress conditions, including the presence of numerous stress-related cis-acting elements, indicated that these genes have varied expression patterns. This suggests that they play specialized roles such as modulating plant defense mechanisms against nematode infections, enhancing tolerance to drought and high salinity, and responding to cold stress, thereby helping soybean adapt to environmental stresses. Moreover, the expression of specific GmSCPLs was significantly affected following exposure to nematode infection, drought, high salt (NaCl), and cold stresses. Our findings underscore the potential of SCPL genes in enhancing stress resistance in soybean, providing a valuable resource for future genetic improvement and breeding strategies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
25
Issue :
12
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
178186140
Full Text :
https://doi.org/10.3390/ijms25126712