Back to Search
Start Over
Selective Adsorption of Sr(II) from Aqueous Solution by Na 3 FePO 4 CO 3 : Experimental and DFT Studies.
- Source :
-
Molecules . Jun2024, Vol. 29 Issue 12, p2908. 17p. - Publication Year :
- 2024
-
Abstract
- The efficient segregation of radioactive nuclides from low-level radioactive liquid waste (LLRW) is paramount for nuclear emergency protocols and waste minimization. Here, we synthesized Na3FePO4CO3 (NFPC) via a one-pot hydrothermal method and applied it for the first time to the selective separation of Sr2+ from simulated LLRW. Static adsorption experimental results indicated that the distribution coefficient Kd remained above 5000 mL·g−1, even when the concentration of interfering ions was more than 40 times that of Sr2+. Furthermore, the removal efficiency of Sr2+ showed no significant change within the pH range of 4 to 9. The adsorption of Sr2+ fitted the pseudo-second-order kinetic model and the Langmuir isotherm model, with an equilibrium time of 36 min and a maximum adsorption capacity of 99.6 mg·g−1. Notably, the adsorption capacity was observed to increment marginally with an elevation in temperature. Characterization analyses and density functional theory (DFT) calculations elucidated the adsorption mechanism, demonstrating that Sr2+ initially engaged in an ion exchange reaction with Na+. Subsequently, Sr2+ coordinated with four oxygen atoms on the NFPC (100) facet, establishing a robust Sr-O bond via orbital hybridization. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 29
- Issue :
- 12
- Database :
- Academic Search Index
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- 178185191
- Full Text :
- https://doi.org/10.3390/molecules29122908