Back to Search Start Over

Identifying genomic regions associated with C4 photosynthetic activity and leaf anatomy in Alloteropsis semialata.

Authors :
Alenazi, Ahmed S.
Pereira, Lara
Christin, Pascal‐Antoine
Osborne, Colin P.
Dunning, Luke T.
Source :
New Phytologist. Jul2024, p1. 6p. 5 Illustrations, 1 Chart.
Publication Year :
2024

Abstract

Summary C4 photosynthesis is a complex trait requiring multiple developmental and metabolic alterations. Despite this complexity, it has independently evolved over 60 times. However, our understanding of the transition to C4 is complicated by the fact that variation in photosynthetic type is usually segregated between species that diverged a long time ago. Here, we perform a genome‐wide association study (GWAS) using the grass Alloteropsis semialata, the only known species to have C3, intermediate, and C4 accessions that recently diverged. We aimed to identify genomic regions associated with the strength of the C4 cycle (measured using δ13C), and the development of C4 leaf anatomy. Genomic regions correlated with δ13C include regulators of C4 decarboxylation enzymes (RIPK), nonphotochemical quenching (SOQ1), and the development of Kranz anatomy (SCARECROW‐LIKE). Regions associated with the development of C4 leaf anatomy in the intermediate individuals contain additional leaf anatomy regulators, including those responsible for vein patterning (GSL8) and meristem determinacy (GIF1). The parallel recruitment of paralogous leaf anatomy regulators between A. semialata and other C4 lineages implies the co‐option of these genes is context‐dependent, which likely has implications for the engineering of the C4 trait into C3 species. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0028646X
Database :
Academic Search Index
Journal :
New Phytologist
Publication Type :
Academic Journal
Accession number :
178175849
Full Text :
https://doi.org/10.1111/nph.19933