Back to Search Start Over

Development of Low-Cost c-Si-Based CPV Cells for a Solar Co-Generation Absorber in a Parabolic Trough Collector.

Authors :
Aydin, Elsen
Buchroithner, Armin
Felsberger, Richard
Preßmair, Rupert
Azgın, Ahmet
Turan, Rasit
Keçeci, Ahmet Emin
Bektaş, Gence
Akinoglu, Bulent
Source :
Energies (19961073). Jun2024, Vol. 17 Issue 12, p2890. 24p.
Publication Year :
2024

Abstract

Concentrator photovoltaics (CPVs) have demonstrated high electrical efficiencies and technological potential, especially when deployed in CPV–thermal (CPV-T) hybrid absorbers, in which the cells' waste heat can be used to power industrial processes. However, the high cost of tracking systems and the predominant use of expensive multi-junction PV cells have caused the market of solar co-generation technologies to stall. This paper describes the development and testing of a low-cost alternative CPV cell based on crystalline silicone (c-Si) for use in a novel injection-molded parabolic hybrid solar collector, generating both, photovoltaic electricity and thermal power. The study covers two different c-Si cell technologies, namely, passive emitter rear contact (PERC) and aluminum back surface field (Al-BSF). Simulation design and manufacturing are described with special attention to fingerprinting in order to achieve high current carrying capacities for concentrated sunlight. It was determined that Al-BSF cells offer higher efficiencies than PERC for the considered use case. Solar simulator tests showed that the highly doped 4 cm2 cells (50 ohm/sq) reach efficiencies of 16.9% under 1 sun and 13.1% under 60 suns at 25 °C with a temperature coefficient of −0.069%(Abs)/K. Finally, options to further improve the cells are discussed and an outlook is given for deployment in a field-testing prototype. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
17
Issue :
12
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
178154776
Full Text :
https://doi.org/10.3390/en17122890