Back to Search
Start Over
Structural, morphological, and optical bandgap properties of ZnS thin films: a case study on thickness dependence.
- Source :
-
Optical & Quantum Electronics . Jul2024, Vol. 56 Issue 7, p1-20. 20p. - Publication Year :
- 2024
-
Abstract
- Thin films of zinc sulfide (ZnS) with varying thicknesses have been successfully fabricated using radio frequency magnetron sputtering on glass substrates at a temperature of 300 K. Structural analysis via X-ray diffraction and selected area electron diffraction confirmed the presence of nanocrystalline cubic ZnS phases in the films. The crystallite size, determined from X-ray diffraction lines, ranged between 42 and 55 nm. We also explored the morphological attributes of these surfaces and observed significant changes in both grain shape and size. Our atomic force microscopy analyses revealed that the thinner film displayed a topography marked by thinner, elongated rough peaks. As the film thickness increased, these rough peaks gradually transformed into wider, flatter features. Additionally, the films exhibited distinct percolation properties, which were undeniably tied to the alterations in the shape and size of the ZnS grains on their surfaces. Thinner samples demonstrated more pronounced surface percolation (FS > 0.5) compared to thicker samples, which displayed reduced surface percolation. Furthermore, we noted that the 250 nm film predominantly showcased strongly multifractal 3D spatial patterns in contrast to the other films. Spectroscopic measurements in the UV–visible-near infrared region revealed high transparency across the 350–850 nm spectra, with a noticeable blue shift in the absorption edge. Calculations yielded direct allowed band gaps within the range of 3.69–3.85 eV. These results indicate that the optical properties of films can be tailored by their structural and morphological characteristics, thereby offering valuable guidance for their appropriate applications. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03068919
- Volume :
- 56
- Issue :
- 7
- Database :
- Academic Search Index
- Journal :
- Optical & Quantum Electronics
- Publication Type :
- Academic Journal
- Accession number :
- 178151258
- Full Text :
- https://doi.org/10.1007/s11082-024-07039-6