Back to Search
Start Over
Three-Dimensional Graph Products with Unbounded Stack-Number.
- Source :
-
Discrete & Computational Geometry . Jun2024, Vol. 71 Issue 4, p1210-1237. 28p. - Publication Year :
- 2024
-
Abstract
- We prove that the stack-number of the strong product of three n-vertex paths is Θ (n 1 / 3) . The best previously known upper bound was O(n). No non-trivial lower bound was known. This is the first explicit example of a graph family with bounded maximum degree and unbounded stack-number. The main tool used in our proof of the lower bound is the topological overlap theorem of Gromov. We actually prove a stronger result in terms of so-called triangulations of Cartesian products. We conclude that triangulations of three-dimensional Cartesian products of any sufficiently large connected graphs have large stack-number. The upper bound is a special case of a more general construction based on families of permutations derived from Hadamard matrices. The strong product of three paths is also the first example of a bounded degree graph with bounded queue-number and unbounded stack-number. A natural question that follows from our result is to determine the smallest Δ 0 such that there exists a graph family with unbounded stack-number, bounded queue-number and maximum degree Δ 0 . We show that Δ 0 ∈ { 6 , 7 } . [ABSTRACT FROM AUTHOR]
- Subjects :
- *HADAMARD matrices
*GRAPH connectivity
*TRIANGULATION
*PERMUTATIONS
Subjects
Details
- Language :
- English
- ISSN :
- 01795376
- Volume :
- 71
- Issue :
- 4
- Database :
- Academic Search Index
- Journal :
- Discrete & Computational Geometry
- Publication Type :
- Academic Journal
- Accession number :
- 178065648
- Full Text :
- https://doi.org/10.1007/s00454-022-00478-6