Back to Search Start Over

Cloning and functional characterization of the legumin A gene (EuLEGA) from Eucommia ulmoides Oliver.

Authors :
Zheng, Lina
Zhao, De-Gang
Source :
Scientific Reports. 6/19/2024, Vol. 14 Issue 1, p1-16. 16p.
Publication Year :
2024

Abstract

Legumin A is a seed storage protein that provides nutrients for seed germination. The purpose of this study was to describe the structure and expression pattern of the EuLEGA gene in Eucommia ulmoides Oliver (E. ulmoides) and to infer its functional role. The 1287 bp coding sequence of the EuLEGA CDS of the EuLEGA gene, encoding a protein containing 428 amino acid residues, was cloned. The structure predicted that the protein belonged to the RmlC (deoxythymidine diphosphates, dTDP)-4-dehydrorhamnose 3,5-epimerase)-like cupin conserved domain family, which contains both RmlC, a key enzyme for the synthesis of rhamnose and legumin A. The overexpression (OE) vector of the EuLEGA gene was constructed and genetically transformed into tobacco and E. ulmoides; the RNA interference (RNAi) vector of the EuLEGA gene was constructed and genetically transformed into E. ulmoides; and the contents of legumin A and rhamnose were detected. The results showed that the EuLEGA gene could significantly increase the content of legumin A in transgenic tobacco leaves and transgenic E. ulmoides regenerative buds, and the OE of this gene in E. ulmoides could promote an increase in rhamnose content. RNAi caused a significant decrease in the legumin A content in the regenerated buds of E. ulmoides. These was a significant increase in legumin A in the transgenic tobacco seeds, and these results indicate that the expression of the EuLEGA gene is closely related to the accumulation of legumin A. Subcellular localization studies revealed that EuLEGA is localized to the cytoplasm with the vacuolar membrane. Analysis of the EuLEGA gene expression data revealed that the expression level of the EuLEGA gene in the samaras was significantly greater than that in the leaves and stems. In addition, the study also demonstrated that GA3 can upregulate the expression levels of the EuLEGA gene, while ABA and MeJA can downregulate its expression levels. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
177993754
Full Text :
https://doi.org/10.1038/s41598-024-65020-5