Back to Search Start Over

Effect of heavy Dy3+ doping on the magnetic, structural, morphological, and optical characteristics of CuDyxFe2-xO4 nanoparticles.

Authors :
Mohamed, W.S.
Tozri, Anwar
Abdelbaky, Mohammed S.M.
García-Granda, Santiago
Almutairi, Tahani Saad
Alzaid, Meshal
Abu-Dief, Ahmed M.
Source :
Ceramics International. Aug2024, Vol. 50 Issue 16, p28505-28521. 17p.
Publication Year :
2024

Abstract

The present study explored the impacts of dysprosium (Dy³⁺) doping on the structure, optical, and magnetic characteristics of CuDy x Fe 2-x O 4 nanospinel ferrites synthesized via a hydrothermal method. X-ray diffraction revealed a tetragonal spinel matrix with increasing Dy³⁺ content, accompanied by a secondary Dy 2 O 3 phase at higher dopant levels for x ≥ 0.1. Crystallite size and microstrain increased with doping, while infrared spectroscopy confirmed the spinel structure and distinct vibrational modes. Interestingly, saturation magnetization displayed a non-monotonic trend, first rising due to spin polarization and cation redistribution, then decreasing with higher Dy³⁺ content attributable to the Dy 2 O 3 phase and larger grains. Coercivity exhibited a maximum at x = 0.2, reflecting the interplay between magnetocrystalline anisotropy, canting angles, and domain wall pinning. These findings highlight the complex interplay between Dy³⁺ doping and the resulting properties, paving the way for tailored CuDy x Fe 2-x O 4 nanospinel ferrites functionalities.. Further research involving advanced techniques and targeted dopant levels holds promise for optimizing properties for diverse technological applications such as magnetic storage, microwave devices, sensors, and hyperthermia treatment. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02728842
Volume :
50
Issue :
16
Database :
Academic Search Index
Journal :
Ceramics International
Publication Type :
Academic Journal
Accession number :
177992673
Full Text :
https://doi.org/10.1016/j.ceramint.2024.05.160