Back to Search
Start Over
Morin hydrate ameliorates Di-2-ethylhexyl phthalate (DEHP) induced hepatotoxicity in a mouse model via TNF-α and NF-κβ signaling.
- Source :
-
3 Biotech . 6/18/2024, Vol. 14 Issue 7, p1-16. 16p. - Publication Year :
- 2024
-
Abstract
- Di-(2-ethylhexyl) phthalic acid (DEHP) pollutes the environment, and posing a significant risk to human and animal health. Consequently, a successful preventative strategy against DEHP-induced liver toxicity needs to be investigated. Morin hydrate (MH), a flavanol compound, possesses toxic preventive attributes against various environmental pollutants. However, the effects of MH have not been investigated against DEHP-induced liver toxicity. Female Swiss albino mice were divided into four groups: control, DEHP (orally administered with 500 mg/kg, DEHP plus MH 10 mg/kg, and DEHP plus MH 100 mg/kg for 14 days. The results showed that the MH treatment ameliorated the DEHP-induced liver dysfunctions by decreasing the alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin, liver histoarchitecture, fibrosis, and markers of oxidative stress. Furthermore, DEHP increased apoptosis, increased active caspase 3 and decreased B cell lymphoma-2 (Bcl-2) expression. However, the MH treatment showed a differential effect on these proteins; a lower dose increased, and a higher dose decreased the expression. Thus, a lower dose of MH could be involved in the disposal of damaged hepatocytes. Expression of Estrogen receptors alpha (ERα) also showed a similar trend with active caspase 3. Furthermore, the expression of Tumor necrosis factor alpha (TNF-α) and Nuclear factor-κβ (NF-κβ) were up-regulated by DEHP treatment, and MH treatment down-regulated the expression of these two inflammatory markers. Since this down-regulation of TNF-α and NF-κβ coincides with improved liver functions against DEHP-induced toxicity, it can be concluded that MH-mediated liver function involves the singling of TNF-α and NF-κβ. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 2190572X
- Volume :
- 14
- Issue :
- 7
- Database :
- Academic Search Index
- Journal :
- 3 Biotech
- Publication Type :
- Academic Journal
- Accession number :
- 177963227
- Full Text :
- https://doi.org/10.1007/s13205-024-04012-8