Back to Search Start Over

Robustness in population-structure and demographic-inference results derived from the Aedes aegypti genotyping chip and whole-genome sequencing data.

Authors :
Gómez-Palacio, Andrés
Morinaga, Gen
Turner, Paul E
Micieli, Maria Victoria
Elnour, Mohammed-Ahmed B
Salim, Bashir
Surendran, Sinnathamby Noble
Ramasamy, Ranjan
Powell, Jeffrey R
Soghigian, John
Gloria-Soria, Andrea
Source :
G3: Genes | Genomes | Genetics. Jun2024, Vol. 14 Issue 6, p1-12. 12p.
Publication Year :
2024

Abstract

The mosquito Aedes aegypti is the primary vector of many human arboviruses such as dengue, yellow fever, chikungunya, and Zika, which affect millions of people worldwide. Population genetic studies on this mosquito have been important in understanding its invasion pathways and success as a vector of human disease. The Axiom aegypti1 SNP chip was developed from a sample of geographically diverse A. aegypti populations to facilitate genomic studies on this species. We evaluate the utility of the Axiom aegypti1 SNP chip for population genetics and compare it with a low-depth shotgun sequencing approach using mosquitoes from the native (Africa) and invasive ranges (outside Africa). These analyses indicate that results from the SNP chip are highly reproducible and have a higher sensitivity to capture alternative alleles than a low-coverage whole-genome sequencing approach. Although the SNP chip suffers from ascertainment bias, results from population structure, ancestry, demographic, and phylogenetic analyses using the SNP chip were congruent with those derived from low-coverage whole-genome sequencing, and consistent with previous reports on Africa and outside Africa populations using microsatellites. More importantly, we identified a subset of SNPs that can be reliably used to generate merged databases, opening the door to combined analyses. We conclude that the Axiom aegypti1 SNP chip is a convenient, more accurate, low-cost alternative to low-depth whole-genome sequencing for population genetic studies of A. aegypti that do not rely on full allelic frequency spectra. Whole-genome sequencing and SNP chip data can be easily merged, extending the usefulness of both approaches. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21601836
Volume :
14
Issue :
6
Database :
Academic Search Index
Journal :
G3: Genes | Genomes | Genetics
Publication Type :
Academic Journal
Accession number :
177947359
Full Text :
https://doi.org/10.1093/g3journal/jkae082