Back to Search Start Over

Excellent energy storage properties in ZrO2 toughened Ba0.55Sr0.45TiO3-based relaxor ferroelectric ceramics via multi-scale synergic regulation.

Authors :
Yang, Fan
Bao, Yizheng
Zeng, Biao
Wu, Jiyue
Li, Xin
Sun, Yiyang
Chen, Ying
Wang, Genshui
Source :
Chemical Engineering Journal. Aug2024, Vol. 493, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

• Achieving ultrahigh W rec of 10.0 J/cm3 and η of 91 % in BST-based ceramics. • The variation of relaxor feature is analyzed by multi-polarization mechanism model. • Simultaneously toughening and enhanced energy storage performance are realized. Lead-free ceramic capacitors offer ultrahigh power density and ultrafast discharging rates, making them critical energy storage components for advanced pulsed power systems. However, the greatest obstacle to broader applications remains the relatively low energy storage density. In this study, a relaxor ferroelectric ceramic based on (0.6-x)Ba 0.55 Sr 0.45 TiO 3 -0.4Bi 0.5 Na 0.5 TiO 3 -xSrZrO 3 ((0.6-x)BST-0.4BNT-xSZ) is prepared using the tape casting method, resulting in an excellent energy density (W rec ≈ 10.0 J cm−3) and high energy storage efficiency (η ≈ 91 %). The solid solution of linear dielectrics SrZrO 3 synergistically regulates both relaxor properties and breakdown strength. The variation of relaxor property was explored utilizing New Glass model and the multi-polarization model, with confirmation provided by piezoresponse force microscopy. Furthermore, the breakdown strength could be attributed to improvements in electric insulation and the widening of the bandgap. As SrZrO 3 content increases, the in-situ emergence of the second phase ZrO 2 , accompanied by a martensitic transformation, not only improves the fracture toughness of ceramics but also serves to elongate the breakdown path. Encouragingly, x = 0.20 ceramics also achieve excellent temperature stability (−95–125 ℃), frequency stability (1–1000 Hz), cycling reliability (1–106 cycles), and great charging-discharging properties. This multiscale synergic regulation strategy plays a guiding role in the screening of high-performance energy storage dielectric materials. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13858947
Volume :
493
Database :
Academic Search Index
Journal :
Chemical Engineering Journal
Publication Type :
Academic Journal
Accession number :
177944091
Full Text :
https://doi.org/10.1016/j.cej.2024.152624