Back to Search Start Over

Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator.

Authors :
Russo, Maria Rosa
Bartholomew, Sadie L.
Hassell, David
Mason, Alex M.
Neininger, Erica
Perman, A. James
Sproson, David A. J.
Watson-Parris, Duncan
Abraham, Nathan Luke
Source :
Geoscientific Model Development Discussions. 6/17/2024, p1-17. 17p.
Publication Year :
2024

Abstract

This work presents the first step in the development of the VISION toolkit, a set of python tools that allows for easy, efficient and more meaningful comparison between global atmospheric models and observational data. Whilst observational data and modelling capabilities are expanding in parallel, there are still barriers preventing these two data sources to be used in synergy. This arises from differences in spatial and temporal sampling between models and observational platforms: observational data from a research aircraft, for example, is sampled on specified flight trajectories at very high temporal resolution. Proper comparison with model data requires generating, storing and handling a large amount of highly temporally resolved model files, resulting in a process which is data, labour, and time intensive. In this paper we focus on comparison between model data and in-situ observations (from aircrafts, ships, buoys, sondes etc.). A stand-alone code, In-Situ Observation simulator, or ISO_simulator in short, is described here: this software reads modelled variables and observational data files and outputs model data interpolated in space and time to match observations. This model data is then written to NetCDF files that can be efficiently archived, due to their small sizes, and directly compared to observations. This method achieves a large reduction in the size of model data being produced for comparison with flight and other in-situ data. By interpolating global, gridded, hourly files onto observations locations, we reduce data output for a typical climate resolution run, from ~3 Gb per model variable per month to ~15 Mb per model variable per month (a 200 times reduction in data volume). The VISION toolkit is fast and easy to use, therefore enabling the exploitation of large observational datasets spanning decades, to be used for large scale model evaluation. Although this code has been initially tested within the Unified Model (UM) framework, which is shared by the UK Earth System Model (UKESM), it was written as a flexible tool and it can be extended to work with other models. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19919611
Database :
Academic Search Index
Journal :
Geoscientific Model Development Discussions
Publication Type :
Academic Journal
Accession number :
177930574
Full Text :
https://doi.org/10.5194/gmd-2024-73