Back to Search Start Over

Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism

Authors :
Yang, Weihong
Blasiak, Wlodzimierz
Source :
Fuel Processing Technology. May2005, Vol. 86 Issue 9, p943-957. 15p.
Publication Year :
2005

Abstract

Abstract: A study of the mathematical modelling of NO formation and emissions in a gas-fired regenerative furnace with high-preheated air was performed. The model of NO formation via N2O-intermediate mechanism was proposed because of the lower flame temperature in this case. The reaction rates of this new model were calculated basing on the eddy-dissipation-concept. This model accompanied with thermal-NO, prompt-NO and NO reburning models were used to predict NO emissions and formations. The sensitivity of the furnace temperature and the oxygen availability on NO generation rate has been investigated. The predicted results were compared with experimental values. The results show that NO emission formed by N2O-intermediate mechanism is of outstanding importance during the high-temperature air combustion (HiTAC) condition. Furthermore, it shows that NO models with N2O-route model can give more reasonable profile of NO formation. Additionally, increasing excess air ratio leads to increasing of NO emission in the regenerative furnace. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03783820
Volume :
86
Issue :
9
Database :
Academic Search Index
Journal :
Fuel Processing Technology
Publication Type :
Academic Journal
Accession number :
17789966
Full Text :
https://doi.org/10.1016/j.fuproc.2004.10.005