Back to Search Start Over

Parameter identification of a reaction-diffusion predator-prey system based on optimal control theory.

Authors :
Miao, Li
Zhu, Linhe
Source :
Applied Mathematical Modelling. Sep2024, Vol. 133, p1-19. 19p.
Publication Year :
2024

Abstract

This paper takes a reaction-diffusion predator-prey system with ratio-dependent Holling III functional response function and Leslie-Gower term into consideration. First of all, the system model is proposed on the basis of basic biological assumptions and previous work, and the existence conditions of the equilibrium point of the system are discussed. Secondly, under the assumption of the existence of equilibrium point, the Turing instability necessary conditions induced by diffusion are investigated. Thirdly, optimal control theory is derived, and the adjoint system and the first-order optimization condition are established. Fourthly, parameter identification based on optimal control is studied, and the technique is extended to network structure. Finally, extensive numerical simulations, including Turing pattern, Normalized Population High Distribution Area (NPHDA) diagram and parameter identification, are carried out to illustrate and validate the analytical results. For the system dynamics phenomena, the results from different perspectives effectively demonstrate that the theoretical findings, numerical simulations and natural reality are identical. In terms of the parameter identification of continuous model and network model, the efficiency and accuracy of various algorithms are fully tested. • This paper proposes and investigates index normalized population height distribution area. • The optimal control problem of reaction-diffusion predator-prey system is formally derived. • The parameter identification research is extended to population network structure space. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0307904X
Volume :
133
Database :
Academic Search Index
Journal :
Applied Mathematical Modelling
Publication Type :
Academic Journal
Accession number :
177885162
Full Text :
https://doi.org/10.1016/j.apm.2024.05.007