Back to Search Start Over

Characterization and immunological effect of outer membrane vesicles from Pasteurella multocida on macrophages.

Authors :
Sun, Jiaying
Huang, Yee
Li, Xuefeng
Xu, Xiangfei
Cui, Xuemei
Hao, Fangjiao
Ji, Quanan
Chen, Chun
Bao, Guolian
Liu, Yan
Source :
Applied Microbiology & Biotechnology. 2/26/2024, Vol. 108 Issue 1, p1-15. 15p.
Publication Year :
2024

Abstract

Pasteurella multocida is an important bacterial pathogen that can cause diseases in both animals and humans. Its elevated morbidity and mortality rates in animals result in substantial economic repercussions within the livestock industry. The prevention of diseases caused by P. multocida through immunization is impeded by the absence of a safe and effective vaccine. Outer membrane vesicles (OMVs) secreted from the outer membrane of Gram-negative bacteria are spherical vesicular structures that encompass an array of periplasmic components in conjunction with a diverse assortment of lipids and proteins. These vesicles can induce antibacterial immune responses within the host. P. multocida has been shown to produce OMVs. Nonetheless, the precise characteristics and immunomodulatory functions of P. multocida OMVs have not been fully elucidated. In this study, OMVs were isolated from P. multocida using an ultrafiltration concentration technique, and their morphology, protein constitution, and immunomodulatory properties in RAW264.7 cells were studied. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) revealed that the OMVs exhibited typical spherical and bilayered lipid vesicular architecture, exhibiting an average diameter of approximately 147.5 nm. The yield of OMVs was 2.6 × 1011 particles/mL. Proteomic analysis revealed a high abundance of membrane-associated proteins within P. multocida OMVs, with the capability to instigate the host's immune response. Furthermore, OMVs stimulated the proliferation and cellular uptake of macrophages and triggered the secretion of cytokines, such as TNF-ɑ, IL-1β, IL-6, IL-10, and TGF-β1. Consequently, our results indicated that OMVs from P. multocida could directly interact with macrophages and regulate their immune function in vitro. These results supported the prospective applicability of P. multocida OMVs as a platform in the context of vaccine development. Key points: • Preparation and characterization of P. multocida OMVs. • P. multocida OMVs possess a range of antigens and lipoproteins associated with the activation of the immune system. • P. multocida OMVs can activate the proliferation, internalization, and cytokine secretion of macrophages in vitro. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01757598
Volume :
108
Issue :
1
Database :
Academic Search Index
Journal :
Applied Microbiology & Biotechnology
Publication Type :
Academic Journal
Accession number :
177881550
Full Text :
https://doi.org/10.1007/s00253-024-13060-2