Back to Search
Start Over
High throughput screening of promoted bimetallic catalysts supported on alumina for production of light olefins via Fischer-Tropsch synthesis with artificial neural network and response surface methodology.
- Source :
-
Fuel . Sep2024:Part A, Vol. 371, pN.PAG-N.PAG. 1p. - Publication Year :
- 2024
-
Abstract
- [Display omitted] • Investigation of promoter type and its composition on the light olefin production via Fischer-Tropsch Synthesis (FTS). • Evaluating designated catalyst performances by computational approaches: Response Surface Methodology (RSM) and Artificial Neural Network (ANN). • Both methods create promising models for light olefin production via FTS based on MSE and R2. • Ho, Cu and Zn promoters were found to have a positive effect on light olefin production. • 0.5Ho10Fe2Co/α-Al 2 O 3 catalyst attained the highest light olefin production among a total of 49 designated catalysts. The production of light olefins via Fischer-Tropsch Synthesis (FTS) was investigated by both experimental and modeling studies. Experimental studies were conducted by employing promoted FeCo/α-Al 2 O 3 (FeCo) bimetallic catalysts. The Response Surface Methodology (RSM) and Artificial Neural Network (ANN) methods were used in modeling. Specifically, effects of the types and concentration of promoters on the catalytic performances of α-Al 2 O 3 supported iron-cobalt bimetallic catalysts are investigated by using Ce, Ni, La, Ho, Ga Cu, Mn, and Zn used as promoters. A total of 49 catalysts were prepared by co-impregnation method and tested at 310 °C and 1 bar in a high-speed catalyst performance test system (HT-CPA). The FTS performances of catalysts showed that both the types and amounts of the promoters can affect light olefin production. The light olefin (C 2 =–C 3 =) production of unpromoted FeCo catalyst was about 3.87 × 10−3 (mol C/g active metal. h). The best performances were obtained from FeCo catalysts promoted with Ho, Cu, and Zn. Presence of these promoters increased olefin production up to ∼ 84 %, 76 % and 70 %, respectively. Performance parameters (MSE and R2) of RSM and ANN models revealed that both methods can be used to support experimental studies and provide a procedure for optimizing catalyst formulations yielding the desired product selectivity in FTS processes. The RSM outcomes aligned with experimental findings, suggest that that Ho, Cu, and Zn can serve as suitable promoters for the light olefin production in FTS. ANN model attained higher performance parameters (R2 = 0.95 and MSE = 2E−7) than RSM model (R2 = 0.85 and MSE = 3.4E−7). This indicates that ANN model, which designed as one hidden layer including 7 neurons, can provide better predictions and a fitting capacity. Therefore, it may be used in further optimization and sensitivity analysis approaches. Alignment degree between the experimental and modeling results demonstrates that the proposed methodology can provide a reliable and efficient way to guide experiments to optimize catalyst formulations through identification of potential promoters and their amounts to be used. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00162361
- Volume :
- 371
- Database :
- Academic Search Index
- Journal :
- Fuel
- Publication Type :
- Academic Journal
- Accession number :
- 177874698
- Full Text :
- https://doi.org/10.1016/j.fuel.2024.131935