Back to Search Start Over

Application of Synephrine to Grape Increases Anthocyanin via Production of Hydrogen Peroxide, Not Phytohormones.

Authors :
Suzuki, Masaya
Kimura, Aoi
Suzuki, Shunji
Enoki, Shinichi
Source :
International Journal of Molecular Sciences. Jun2024, Vol. 25 Issue 11, p5912. 15p.
Publication Year :
2024

Abstract

Global warming has caused such problems as the poor coloration of grape skin and the decreased production of high-quality berries. We investigated the effect of synephrine (Syn) on anthocyanin accumulation. Anthocyanin accumulation in cultured grape cells treated with Syn at concentrations of 1 mM or higher showed no significant difference, indicating that the accumulation was concentration-independent. On the other hand, anthocyanin accumulation was dependent on the compound used for treatment. The sugar/acid ratio of the juice from berries treated with Syn did not differ from the control. The expression of anthocyanin-biosynthesis-related genes, but not phytohormones, was increased by the treatment with Syn at 24 h or later. The Syn treatment of cultured cells increased SOD3 expression and hydrogen peroxide (H2O2) production from 3 to 24 h after treatment. Subsequently, the expression of CAT and APX6 encoding H2O2-scavenging enzymes was also increased. Treatment of cultured cells with Syn and H2O2 increased the expression of the H2O2-responsive gene Chit4 and the anthocyanin-biosynthesis-related genes mybA1 and UFGT 4 days after the treatment and increased anthocyanin accumulation 7 days after the treatment. On the other hand, the treatment of berries with Syn and H2O2 increased anthocyanin accumulation after 9 days. These results suggest that Syn increases anthocyanin accumulation through H2O2 production without changing phytohormone biosynthesis. Syn is expected to improve grape skin coloration and contribute to high-quality berry production. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
25
Issue :
11
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
177850637
Full Text :
https://doi.org/10.3390/ijms25115912