Back to Search Start Over

Boosting Aluminum Storage in Highly Stable Covalent Organic Frameworks with Abundant Accessible Carbonyl Groups.

Authors :
Peng, Xiyue
Baktash, Ardeshir
Alghamdi, Norah
Rana, Md Masud
Huang, Yongxin
Hu, Xinyue
He, Cailing
Luo, Zhiruo
Ning, Jing
Wang, Lianzhou
Luo, Bin
Source :
Advanced Energy Materials. Jun2024, Vol. 14 Issue 22, p1-11. 11p.
Publication Year :
2024

Abstract

Aluminum batteries employing organic electrode materials present an appealing avenue for sustainable and large‐scale energy storage. Nevertheless, conventional organic materials encounter limitations due to their restricted active sites, known instability, and sluggish redox kinetics. In this study, a redox‐active covalent organic framework supported by CNT is reported, enriched with substantial C═O groups, as an advanced cathode material for Al‐organic batteries. Theoretical simulation and ex situ analysis unveil the pivotal roles of C═O groups in effectively storing AlCl2+. As a result, Al batteries with the organic cathode exhibit a specific capacity of 290 mAh g−1 at 0.2 A g−1 and outstanding rate performance. Furthermore, it retains a reversible capacity of 170 mAh g−1 even after 32 000 cycles at 10 A g−1 and attains an energy density of 389 Wh kg−1. The remarkable performance stems not only from the abundant C═O and C─N groups enabling the storage of multiple AlCl2+ by the favorable pseudocapacitive process, but also from the synergistic interplay between the robust COF network and the conductive CNT channels that significantly enhances structural stability and accelerates ion/electron diffusion. This work stands to inspire further research in the pursuit of stable organic cathodes, fostering designs with plentiful accessible redox‐active sites to boost energy storage capabilities. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16146832
Volume :
14
Issue :
22
Database :
Academic Search Index
Journal :
Advanced Energy Materials
Publication Type :
Academic Journal
Accession number :
177818919
Full Text :
https://doi.org/10.1002/aenm.202400147