Back to Search
Start Over
Infrared spectroscopy of isomers of C3H4+ in superfluid helium droplets.
- Source :
-
Journal of Chemical Physics . 6/7/2024, Vol. 160 Issue 21, p1-7. 7p. - Publication Year :
- 2024
-
Abstract
- Superfluid helium nanodroplets are unique nanomatrices for the isolation and study of transient molecular species, such as radicals, carbenes, and ions. In this work, isomers of C3H4+ were produced upon electron ionization of propyne and allene molecules and interrogated via infrared spectroscopy inside He nanodroplet matrices. It was found that the spectrum of C3H4+ has at least three distinct groups of bands. The relative intensities of the bands depend on the precursor employed and its pickup pressure, which indicates the presence of at least three different isomers. Two isomers were identified as allene and propyne radical cations. The third isomer, which has several new bands in the range of 3100–3200 cm−1, may be the elusive vinylmethylene H2C=CH–CH+ radical cation. The observed bands for the allene and propyne cations are in good agreement with the results of density functional theory calculations. However, there is only moderate agreement between the new bands and the theoretically calculated vinylmethylene spectrum, which indicates more work is necessary to unambiguously assign it. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 160
- Issue :
- 21
- Database :
- Academic Search Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 177744989
- Full Text :
- https://doi.org/10.1063/5.0206412