Back to Search Start Over

The packing fraction of the oxygen sublattice: its impact on the heat of mixing.

Authors :
Benisek, Artur
Dachs, Edgar
Source :
Physics & Chemistry of Minerals. Sep2024, Vol. 51 Issue 3, p1-7. 7p.
Publication Year :
2024

Abstract

The heat of mixing of some petrological relevant substitutions (i.e., Mg-Al, Si-Al, Mg-Ti, Mg-Ca, and Mg-Fe) was investigated systematically in silicates, titanates, tungstates, carbonates, oxides, hydroxides, and sulphates by density functional theory calculations (e.g., melilite, chlorite, biotite, brucite, cordierite, amphibole, talc, pseudobrookite, pyroxene, olivine, wadsleyite, ilmenite, MgWO4, ringwoodite (spinel), perovskite, pyrope-grossular, magnesite-calcite, MgO-CaO, anhydrous and different hydrated MgSO4). A specific substitution is characterised by different microscopic interaction energies in different minerals, e.g., the octahedral Mg-Al exchange on a single crystallographic site in pyroxene has a microscopic interaction energy that is more than twice compared to that in biotite. A comparative investigation of the heat of mixing using microscopic interaction energies on a single crystallographic site has the advantage that they are not influenced by cation ordering. They could be successfully correlated with the stiffnesses of the minerals, which in turn were scaled to the oxygen packing fraction, a parameter that is easily available for poorly investigated minerals. With this information, the interaction energies of a certain substitution can be transferred from minerals where they are well-known to mineral groups where they are less- or unknown. Using the cross-site terms and the microscopic interaction energies, the macroscopic interaction energies of the coupled substitution, e.g., Mg + Si = Al + Al, of biotite and pyroxene were calculated, which are, however, affected by cation ordering and different degrees of local charge balance, for which appropriate models are necessary. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03421791
Volume :
51
Issue :
3
Database :
Academic Search Index
Journal :
Physics & Chemistry of Minerals
Publication Type :
Academic Journal
Accession number :
177648688
Full Text :
https://doi.org/10.1007/s00269-024-01277-6