Back to Search Start Over

Local delivery of accutox® synergises with immune-checkpoint inhibitors at disrupting tumor growth.

Authors :
Bikorimana, Jean Pierre
El-Hachem, Nehme
Abusarah, Jamilah
Gonçalves, Marina Pereira
Farah, Roudy
Mandl, Gabrielle A.
Talbot, Sebastien
Beaudoin, Simon
Stanga, Daniela
Plouffe, Sebastien
Rafei, Moutih
Source :
Journal of Translational Medicine. 6/3/2024, Vol. 22 Issue 1, p1-16. 16p.
Publication Year :
2024

Abstract

Background: The Accum® platform was initially designed to accumulate biomedicines in target cells by inducing endosomal-to-cytosol escape. Interestingly however, the use of unconjugated Accum® was observed to trigger cell death in a variety of cancer cell lines; a property further exploited in the development of Accum®-based anti-cancer therapies. Despite the impressive pro-killing abilities of the parent molecule, some cancer cell lines exhibited resistance. This prompted us to test additional Accum® variants, which led to the identification of the AccuTOX® molecule. Methods: A series of flow-cytometry and cell-based assays were used to assess the pro-killing properties of AccuTOX® along with its ability to trigger the production of reactive oxygen species (ROS), endosomal breaks and antigen presentation. RNA-seq was also conducted to pinpoint the most prominent processes modulated by AccuTOX® treatment in EL4 T-cell lymphoma. Finally, the therapeutic potency of intratumorally-injected AccuTOX® was evaluated in three different murine solid tumor models (EL4, E0771 and B16) both as a monotherapy or in combination with three immune-checkpoint inhibitors (ICI). Results: In total, 7 Accum® variants were screened for their ability to induce complete cell death in 3 murine (EL4, B16 and E0771) and 3 human (MBA-MD-468, A549, and H460) cancer cell lines of different origins. The selected compound (hereafter refereed to as AccuTOX®) displayed an improved killing efficiency (~ 5.5 fold compared to the parental Accum®), while retaining its ability to trigger immunogenic cell death, ROS production, and endosomal breaks. Moreover, transcriptomic analysis revealed that low dose AccuTOX® enhances H2-Kb cell surface expression as well as antigen presentation in cancer cells. The net outcome culminates in impaired T-cell lymphoma, breast cancer and melanoma growth in vivo especially when combined with anti-CD47, anti-CTLA-4 or anti-PD-1 depending on the animal model. Conclusions: AccuTOX® exhibits enhanced cancer killing properties, retains all the innate characteristics displayed by the parental Accum® molecule, and synergizes with various ICI in controlling tumor growth. These observations will certainly pave the path to continue the clinical development of this lead compound against multiple solid tumor indications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14795876
Volume :
22
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Translational Medicine
Publication Type :
Academic Journal
Accession number :
177647498
Full Text :
https://doi.org/10.1186/s12967-024-05340-2