Back to Search
Start Over
Multiclassification of Hepatic Cystic Echinococcosis by Using Multiple Kernel Learning Framework and Ultrasound Images.
- Source :
-
Ultrasound in Medicine & Biology . Jul2024, Vol. 50 Issue 7, p1034-1044. 11p. - Publication Year :
- 2024
-
Abstract
- To properly treat and care for hepatic cystic echinococcosis (HCE), it is essential to make an accurate diagnosis before treatment. The objective of this study was to assess the diagnostic accuracy of computer-aided diagnosis techniques in classifying HCE ultrasound images into five subtypes. A total of 1820 HCE ultrasound images collected from 967 patients were included in the study. A multi-kernel learning method was developed to learn the texture and depth features of the ultrasound images. Combined kernel functions were built-in Support Vector Machine (MK-SVM) for the classification work. The experimental results were evaluated using five-fold cross-validation. Finally, our approach was compared with three other machine learning algorithms: the decision tree classifier, random forest, and gradient boosting decision tree. Among all the methods used in the study, the MK-SVM achieved the highest accuracy of 96.6% on the fused feature set. The multi-kernel learning method effectively learns different image features from ultrasound images by utilizing various kernels. The MK-SVM method, which combines the learning of texture features and depth features separately, has significant application value in HCE classification tasks. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03015629
- Volume :
- 50
- Issue :
- 7
- Database :
- Academic Search Index
- Journal :
- Ultrasound in Medicine & Biology
- Publication Type :
- Academic Journal
- Accession number :
- 177566495
- Full Text :
- https://doi.org/10.1016/j.ultrasmedbio.2024.03.018