Back to Search
Start Over
CLASSIFICATIONS OF THA-SURFACES IN I³.
- Source :
-
Bulletin of the Transilvania University of Braşov: Series III Mathematics & Computer Science . 2024, Vol. 66 Issue 1, p163-174. 12p. - Publication Year :
- 2024
-
Abstract
- In classical differential geometry, the problem of obtaining Gaussian and mean curvatures of a surface is one of the most important problems. A surface M² in I³ is a THA-surface of first type if it can be parameterized by r(s, t) = (s, t, Af(s + at)g(t) + B(f(s + at) + g(t))). A surface M² in I³ is a THA-surface of second type if it can be parameterized by r(s, t) = (s, Af(s + at)g(t) + B(f(s + at) + g(t)), t), where A and B are non-zero real numbers [16, 17, 18]. In this paper, we classify two types THA-surfaces in the 3-dimensional isotropic space I³ and study THA-surfaces with zero curvature in I³. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 28102029
- Volume :
- 66
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Bulletin of the Transilvania University of Braşov: Series III Mathematics & Computer Science
- Publication Type :
- Academic Journal
- Accession number :
- 177543757
- Full Text :
- https://doi.org/10.31926/but.mif.2024.4.66.1.12