Back to Search Start Over

A Comprehensive Evaluation of Dual-Polarimetric Sentinel-1 SAR Data for Monitoring Key Phenological Stages of Winter Wheat.

Authors :
Wang, Mo
Wang, Laigang
Guo, Yan
Cui, Yunpeng
Liu, Juan
Chen, Li
Wang, Ting
Li, Huan
Source :
Remote Sensing. May2024, Vol. 16 Issue 10, p1659. 18p.
Publication Year :
2024

Abstract

Large-scale crop phenology monitoring is critical for agronomic planning and yield prediction applications. Synthetic Aperture Radar (SAR) remote sensing is well-suited for crop growth monitoring due to its nearly all-weather observation capability. Yet, the capability of the dual-polarimetric SAR data for wheat phenology estimation has not been thoroughly investigated. Here, we conducted a comprehensive evaluation of Sentinel-1 SAR polarimetric parameters' sensibilities on winter wheat's key phenophases while considering the incidence angle. We extracted 12 polarimetric parameters based on the covariance matrix and a dual-pol-version H-α decomposition. All parameters were evaluated by their temporal profile and feature importance score of Gini impurity with a decremental random forest classification process. A final wheat phenology classification model was built using the best indicator combination. The result shows that the Normalized Shannon Entropy (NSE), Degree of Linear Polarization (DoLP), and Stokes Parameter g2 were the three most important indicators, while the Span, Average Alpha ( α 2 ¯) , and Backscatter Coefficient σ V H 0 were the three least important features in discriminating wheat phenology for all three incidence angle groups. The smaller-incidence angle (30–35°) SAR images are better suited for estimating wheat phenology. The combination of NSE, DoLP, and two Stokes Parameters (g2 and g0) constitutes the most effective indicator ensemble. For all eight key phenophases, the average Precision and Recall scores were above 0.8. This study highlighted the potential of dual-polarimetric SAR data for wheat phenology estimation. The feature importance evaluation results provide a reference for future phenology estimation studies using dual-polarimetric SAR data in choosing better-informed indicators. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
10
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
177496859
Full Text :
https://doi.org/10.3390/rs16101659