Back to Search Start Over

Large-Scale and Simple Synthesis of NiFe(OH) x Electrode Derived from Raney Ni Precursor for Efficient Alkaline Water Electrolyzer.

Authors :
Li, Tianshui
Liu, Wei
Xin, Huijun
Sha, Qihao
Xu, Haijun
Kuang, Yun
Sun, Xiaoming
Source :
Catalysts (2073-4344). May2024, Vol. 14 Issue 5, p296. 12p.
Publication Year :
2024

Abstract

Water electrolysis is a crucial technology in the production of hydrogen energy. Due to the escalating industrial demand for green hydrogen, the required electrode size for a traditional alkaline water electrolyzer has been increasing. Numerous studies have focused on developing highly active oxygen evolution reaction (OER) catalysts for water electrolysis. However, there remains a significant gap between the microscale synthesis of catalysts in laboratory settings and the macroscale preparation required for industrial scenarios. This challenge is particularly pronounced in the synthesis of sizable self-supported electrodes. In this work, we employed a commercially available Raney Ni-coated Ni mesh as a precursor material to fabricate a self-supported NiFe(OH)x@Raney Ni anode with a substantial dimension exceeding 300 mm through a straightforward immersion technique. The as-prepared electrode exhibited remarkable electrocatalytic OER activity, as an overpotential of only 240 mV is required to achieve 10 mA cm−2. This performance is comparable to that of NiFe-LDHs synthesized via a hydrothermal method, which is difficult to scale up for industrial applications. Furthermore, the electrode demonstrated exceptional durability, maintaining stable operation for over 100 h at a current density of 500 mA cm−2. The large-scale electrode displayed consistent overpotentials across various areas, indicating uniform catalytic activity. When integrated into an alkaline water electrolysis device, it delivered an average cell voltage of 1.80 V at 200 mA cm−2 and achieved a direct current hydrogen production energy consumption as low as 4.3 kWh/Nm3. These findings underline the suitability of electrodes for industrial scale applications, offering a promising alternative for energy-efficient hydrogen production. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734344
Volume :
14
Issue :
5
Database :
Academic Search Index
Journal :
Catalysts (2073-4344)
Publication Type :
Academic Journal
Accession number :
177493166
Full Text :
https://doi.org/10.3390/catal14050296