Back to Search
Start Over
Impact of Physical Interventions, Phosphorus Fertilization, and the Utilization of Soil Amendments on the Absorption of Cadmium by Lettuce Grown in a Solar-Powered Greenhouse.
- Source :
-
Biology (2079-7737) . May2024, Vol. 13 Issue 5, p332. 13p. - Publication Year :
- 2024
-
Abstract
- Simple Summary: To find improved solutions for controlling cadmium pollution in agricultural soil, in situ field experiments were conducted to evaluate the impact of physical measures, phosphate fertilizer application, and soil conditioners on lettuce growth and cadmium absorption. The results revealed that deep plowing and soil covering significantly lowered the cadmium concentration in lettuce. While the application of phosphate fertilizer raised the cadmium concentration in lettuce, the use of diammonium phosphate and calcium magnesium phosphate fertilizer showed a positive correlation with the cadmium concentration, whereas calcium superphosphate displayed a negative correlation. Additionally, upon the application of biochar, attapulgite, and nano-hydroxyapatite, the cadmium concentration in lettuce initially increased with the rising amount of application, but subsequently decreased at higher doses. In conclusion, physical measures are evidently effective in preventing and controlling cadmium pollution. However, the application of phosphate fertilizer can exacerbate cadmium pollution in farmland soil. Soil conditioners, on the other hand, are only effective when used at higher application levels. The findings of this study are crucial for guiding practical cadmium pollution control measures in the field. This study aimed to evaluate the effects of physical measures and the applications of phosphorus fertilizer and soil conditioner on the growth of lettuce (Lactuca sativa) and its uptake of cadmium (Cd). In a solar greenhouse that contained soil enriched with cadmium (Cd) (1.75 ± 0.41 mg/kg) with lettuce used as a test plant, field experimental methods were utilized to explore the influence of physical measures, such as deep plowing and soil covering, and the applications of phosphorus fertilizer, including diammonium phosphate (DAP), calcium magnesium phosphate (CMP), and calcium superphosphate (SSP), and soil conditioners, such as biochar, attapulgite clay, and nano-hydroxyapatite, on the uptake of Cd in lettuce. The results indicated that the concentrations of Cd in the aboveground parts of lettuce were 1.49 ± 0.45, 1.26 ± 0.02, 1.00 ± 0.21, and 0.24 ± 0.13 mg/kg when the soil was plowed 30, 40, and 50 cm deep, respectively, and when the soil was covered with 15 cm, this resulted in reductions of 27.5%, 38.3%, 51.4%, and 88.4%, respectively, compared with the control treatment that entailed plowing to 15 cm. When 75, 150, and 225 kg/ha of phosphorus pentoxide (P2O5) were applied compared with the lack of application, the contents of Cd in the aboveground parts of lettuce increased by 2.0%, 54.5%, and 73.7%, respectively, when DAP was applied; by 52.5%, 48.5%, and 8.1%, respectively, when CMP was applied; and by 13.1%, 61.6%, and 90.9%, respectively, when SSP was applied. When the amounts of biochar applied were 0, 2, 4, 6, 8, 10, and 12 t/ha, the contents of Cd in the aboveground parts of lettuce were 1.36 ± 0.27, 1.47 ± 0.56, 1.80 ± 0.73, 1.96 ± 0.12, 1.89 ± 0.52, 1.44 ± 0.30, and 1.10 ± 0.27 mg/kg, respectively. Under concentrations of 0, 40, 80, 120, 160, and 200 kg/ha, the application of nano-hydroxyapatite resulted in Cd contents of 1.34 ± 0.56, 1.47 ± 0.10, 1.60 ± 0.44, 1.70 ± 0.21, 1.31 ± 0.09, and 1.51 ± 0.34 mg/kg, respectively. The concentrations of Cd in the aboveground parts of lettuce treated with attapulgite clay were 1.44 ± 0.48, 1.88 ± 0.67, 2.10 ± 0.80, 2.24 ± 0.75, 1.78 ± 0.41, and 1.88 ± 0.48 mg/kg, respectively. In summary, under the conditions in this study, deep plowing and soil covering measures can reduce the concentration of Cd in the aboveground parts of lettuce. The application of phosphorus fertilizer increased the concentration of Cd in the aboveground parts of lettuce. The application of higher amounts of DAP and SSP led to greater concentrations of Cd in the aboveground parts of lettuce. The application of higher amounts of CMP caused a lower concentration of Cd in the aboveground parts of lettuce. When biochar, attapulgite clay, and nano-hydroxyapatite were applied, the concentration of Cd in the aboveground parts of lettuce increased in parallel with the increase in the concentration of application when low amounts were applied. In contrast, when high amounts were applied, the concentration of Cd in the aboveground parts of lettuce began to decrease. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20797737
- Volume :
- 13
- Issue :
- 5
- Database :
- Academic Search Index
- Journal :
- Biology (2079-7737)
- Publication Type :
- Academic Journal
- Accession number :
- 177492925
- Full Text :
- https://doi.org/10.3390/biology13050332