Back to Search Start Over

Microbial Detoxification of Sediments Underpins Persistence of Zostera marina Meadows.

Authors :
Nakashima, Yuki
Sonobe, Takumi
Hanada, Masashi
Kitano, Goushi
Sonoyama, Yoshimitsu
Iwai, Katsumi
Kimura, Takashi
Kusube, Masataka
Source :
International Journal of Molecular Sciences. May2024, Vol. 25 Issue 10, p5442. 13p.
Publication Year :
2024

Abstract

Eelgrass meadows have attracted much attention not only for their ability to maintain marine ecosystems as feeding grounds for marine organisms but also for their potential to store atmospheric and dissolved CO2 as blue carbon. This study comprehensively evaluated the bacterial and chemical data obtained from eelgrass sediments of different scales along the Japanese coast to investigate the effect on the acclimatization of eelgrass. Regardless of the eelgrass habitat, approximately 1% Anaerolineales, Babeliales, Cytophagales, and Phycisphaerales was present in the bottom sediment. Sulfate-reducing bacteria (SRB) were present at 3.69% in eelgrass sediment compared to 1.70% in bare sediment. Sulfur-oxidizing bacteria (SOB) were present at 2.81% and 1.10% in the eelgrass and bare sediment, respectively. Bacterial composition analysis and linear discriminant analysis revealed that SOB detoxified H2S in the eelgrass meadows and that the larger-scale eelgrass meadows had a higher diversity of SOB. Our result indicated that there were regional differences in the system that detoxifies H2S in eelgrass meadows, either microbial oxidation mediated by SOB or O2 permeation via the physical diffusion of benthos. However, since bacterial flora and phylogenetic analyses cannot show bias and/or causality due to PCR, future kinetic studies on microbial metabolism are expected. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
25
Issue :
10
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
177489051
Full Text :
https://doi.org/10.3390/ijms25105442